Внутреннее сопротивление источника сигнала, Ом 200
Содержание основных разделов пояснительной записки.
Введение, анализ технического задания.
Эскизный расчет структурной схемы.
Электрический расчет следующих каскадов:
оконечный каскад:
промежуточный каскад;
входной каскад;
Конструкторский расчет элементов схемы.
Перечень обязательных чертежей
Электрическая принципиальная схема;
Перечень элементов;
Дата выдачи задания
Руководитель ____
Студент
Аннотация
Электронный усилитель
Список литературы - 8 наименований
Графическое приложение - 1 лист ф.А3
По заданным данным (ТЗ) был разработан электронный линейный усилитель, усиливающий заданную мощность.
1.Анализ технического задания
Оконечный каскад.
Выходная мощность в техническом задании равна 10 Вт, поэтому в качестве выходного каскада выберем двухтактный каскад. Так как сопротивление нагрузки 8 Ом (меньше 100 Ом), то выходной каскад будет безтрансформаторным
Промежуточный каскад.
Промежуточным каскадом выберем каскад с общим эмиттером. Для обеспечения начального напряжения смещения между базой и эмиттером включим схему делителя.
Входной каскад.
Так как заданно входное сопротивление >5 кОм в качестве входного каскада будем использовать дифференциальный каскад на полевых транзисторах.
2.Эскизный расчет
Рассчитаем основные параметры:
Номинальная мощность в нагрузке: Pн=10 Вт.
Мощность, приходящаяся на одно плечо двухтактного каскада:
P~п=10/2=5 Вт.
Максимальная рассеиваемая мощность одного плеча:
Pрас. max =0,5·P~п=0,5·5=2,5 Вт.
Максимальный ток коллектора равен:
(1)
где Rн - заданное сопротивление нагрузки, Ом.
Тогда напряжение на нагрузке:
,
где Pн- номинальная мощность в нагрузке, Rн - заданное сопротивление нагрузки.
Найдем сквозной коэффициент усиления:
,
где - напряжение на нагрузке, Eu- ЭДС источника сигнала. Множитель 1,5 взят для запаса.
Так как выходной каскад включен по схеме с общим коллектором, то коэффициент усиления по напряжению: KU ? 1. Чтобы получить необходимо в схему усилителя включить промежуточный каскад усиления с
.
Пусть половина линейных искажений приходится на оконечный каскад (), а остальная часть остается на остальные каскады().
дБ;
Так как , находим
;
дБ
Так же найдем
.
3. Расчет принципиальной схемы
3.1 Расчет выходного каскада
Подберем необходимый транзистор исходя из следующих условий:
PК max> Pрас. max,
IК max> IК max.
где PК max- постоянная рассеиваемая мощность коллектора, IК max- постоянный ток коллектора. (Pрас. max =1,25 Вт, IК max =1,11 А - рассчитанны в пункте 3)
Выбираем по пару комплиментарных транзисторов:
VT6 - КТ816А (p-n-p)
VT5 - КТ817А (n-p-n)
Их основные параметры:
Постоянный ток коллектора,Iкмах= 3 А
Постоянное напряжение коллектор-эмиттер, Uкэмах=25 В
Постоянная рассеиваемая мощность коллектора PК.MAX=25 Вт
Постоянная рассеиваемая мощность коллектора транзисторов КТ816А и КТ817А приведена при работе их с теплоотводом.
Выберем напряжение питания исходя из следующего условия:
2Uкэ.доп. Еп 2(Uост.+Uвых), (3)
где Uкэ.доп - максимально-допустимое значение напряжения коллектор - эмиттер для транзисторов КТ816А, КТ817А, Uост = 1 В - остаточное напряжение для транзисторов КТ816А,КТ817А, Uвых. - заданное выходное напряжение. 90 В Еп 19,8 В
Выбираем напряжение питания равное 40 В.
Построим нагрузочную кривую на графике выходных характеристик транзистора КТ816А.
Рисунок 1. Выходные характеристики
Нагрузочная кривая проходит через точки и
Рисунок 2
Рисунок 3
Используя входные и выходные характеристики транзистора, построим проходную характеристику.
IK, А
0,45
0,75
1,07
1,32
IБ, мА
5
15
30
45
UБЭ, В
0,8
0,88
0,93
0,95
Рисунок 4
Исходя из построенной проходной характеристики, определяем:
Iк max= 1,11 А; Iк min= 0,37 А
UБЭ max=0,925 В; IБ max= 22 мА
UБЭ min=0,775 В; IБ min= 2,5 мА
Из полученных значений определяем область изменения IБ и UБЭ:
UБЭ= UБЭ max- UБЭ min=0,925-0,775=0,15 В
IБ= IБ max- IБ min=(22-2,5)·10-3=19,5 мА
Определим значение входного сопротивления:
Определим коэффициент усиления:
где UВХ=UБЭ - входное напряжение выходных транзисторов, В;
UВЫХ - заданное выходное напряжение, В.
Рассчитаем входное сопротивление и коэффициент усиления, с учетом обратной связи.
Rвхос= Rвхоэ (1+·Ки);
где - коэффициент передачи обратной связи
=1 т.к имеется 100% отрицательная обратная связь.
Найдем входное напряжение оконечного каскада:
Рассчитаем g (коэффициент формы тока):
Принимаем g=0,9.
Найдем коллекторное сопротивление транзистора VT4, используется следующее соотношение:
По стандартному ряду сопротивлений выберем R13=470 Ом.
Вычислим коллекторный ток через транзистор VT4, А:
Выберем транзистор исходя из следующих условий:
Выбираем транзистор КТ815Б (n-p-n)
Его основные параметры:
Постоянный ток коллектора, Iкмах= 1,5 А
Постоянное напряжение коллектор-эмиттер, Uкэмах=40 В
Постоянная рассеиваемая мощность коллектора 10 Вт
Рисунок 5
Рисунок 6
Используя входные и выходные характеристики транзистора, построим проходную характеристику по формуле:
Полученные результаты внесены в таблицу 1.
Таблица 1.
h21э
74,5
75
75
71
73
72
Iб, мА
0,5
0,53
0,66
0,81
0,95
1,12
Iк, мА
38,2
40
50
60
70
80,8
Uбэ, В
0,7
0,705
0,715
0,725
0,74
0,76
Рисунок 7
С помощью метода пяти ординат, рассчитаем нелинейные искажения, вносимые предоконечным каскадом:
По техническому заданию =1,5%. Чтобы уменьшить нелинейные искажения необходимо ввести отрицательную обратную связь, которая снизит коэффициент нелинейных искажений в глубину обратной связи (А):
Найдем глубину обратной связи:
До введения обратной связи:
где Uвых- напряжение на выходе предоконечного каскада, Uвх- напряжение на входе предоконечного каскада;
Uвх= UБЭ max-UБЭ min
Uвх =0,76-0,7=0,06 В.
Коэффициент усиления обратной связи:
;
где д- коэффициент передачи обратной связи.
Так как д·Ku>>1, то
Рассчитаем сопротивление нагрузки по переменному току для предоконечного каскада:
где RВХ.ОС- входное сопротивление оконечного каскада.
Находим сопротивление обратной связи:
По линейке номиналов подбираем R14=12 Ом.
Пересчитаем глубину обратной связи и коэффициент усиления с учетом полученного значения R14
Так как необходимо получить Kuос=5,1 увеличим глубину обратной связи
Произведем расчет с учетом новой глубины обратной связи:
По линейке номиналов подбираем R14=47 Ом
Найдем напряжение на входе предоконечного каскада:
На транзисторе VT4 и на сопротивлении обратной связи происходит падение напряжение:
UБ0=UБЭ0+UR14 ;
UR14=IЭ0·R14 ;
Так как IЭ0?IК0 , то
UR14=IК0·R14=42,5·10-3·47=1,99 В.
По входной статической ВАХ транзистора определяем, что UБЭ0=0,73 В.
UБ0=0,73+1,99=2,72 В
Ток делителя выразим из предположения, что он гораздо больше тока базы:
По линейке номиналов подбираем R12=390 Ом.
По линейке номиналов подбираем R11=560 Ом.
Произведем перерасчет тока делителя с учетом выбранных номиналов резисторов R11 и R12:
Так как входное сопротивление предоконечного каскада представляет собой параллельное включение сопротивления транзистора VT4, R11 и R12.
найдем IБ - амплитуду тока базы;
IБ= IБ max - IБ min=(1,12-0,5)·10-3=0,62 мА
рассчитаем сопротивление транзистора:
с учетом обратной связи сопротивление транзистора VT4:
Обеспечение рабочей точки транзисторов оконечного каскада осуществляется с помощью диода, включенного в прямом направлении.
Выбор диода производим исходя из следующих условий:
,
где - напряжение на диоде, - напряжение смещения.
Напряжение смещения находим из проходной характеристики транзистора оконечного каскада:
В
Выбираем диоды Д229А в количестве 4шт со следующими параметрами:
Uпр=0,4 В; Iобр=50 мкА; Uобр=200 В; Iпр=400 мА;
3.2Расчет промежуточногокаскада усилителя
Так как сквозной коэффициент усиления равен 134,1 а коэффициент усиления предоконечного каскада равен 4,95.
Для получения заданного коэффициента усиления нам необходим каскад предварительного усиления с коэффициентом усиления Ku=5,2 и входной каскад с коэффициентом усиления Ku?1.
Выберем транзистор КТ315В
Его основные параметры:
Статический коэффициент передачи тока в схеме с ОЭ, h21э=30…120